Home Tags Simplified orbital mechanics

# Tag: simplified orbital mechanics

## Simplified Mechanics and Strength of Materials

Preface to the Sixth Edition.

Preface to the First Edition.

Introduction.

Structural Mechanics.

Units of Measurement.

Accuracy of Computations.

Symbols.

Nomenclature.

1. Structures: Purpose and Function.

1.3 Generation of Structures.

1.4 Reactions.

1.5 Internal Forces.

1.6 Functional Requirements of Structures.

1.7 Types of Internal Force.

1.8 Stress and Strain.

1.9 Dynamic Effects.

1.10 Design for Structural Response.

2. Forces and Force Actions.

2.2 Forces and Stresses.

2.3 Types of Forces.

2.4 Vectors.

2.5 Properties of Forces.

2.6 Motion.

2.7 Force Components and Combinations.

2.8 Graphical Analysis of Forces.

2.9 Investigation of Force Actions.

2.10 Friction.

2.11 Moments.

2.12 Forces on a Beam.

3. Analysis of Trusses.

3.1 Graphical Analysis of Trusses.

3.2 Algebraic Analysis of Trusses.

3.3 The Method of Sections.

4. Analysis of Beams.

4.1 Types of Beams.

4.3 Shear in Beams.

4.4 Bending Moments in Beams.

4.5 Sense of Bending in Beams.

4.6 Cantilever Beams.

4.11 Tabulated Values for Beam Behavior.

5. Continuous and Restrained Beams.

5.1 Bending Moments for Continuous Beams.

5.2 Restrained Beams.

5.3 Beams with Internal Pins.

5.4 Approximate Analysis of Continuous Beams.

6. Retaining Walls.

6.1 Horizontal Earth Pressure.

6.2 Stability of Retaining Walls.

6.3 Vertical Soil Pressure.

7. Rigid Frames.

7.1 Cantilever Frames.

7.2 Single-Span Frames.

8. Noncoplanar Force Systems.

8.1 Concurrent Systems.

8.2 Parallel Systems.

8.3 General Noncoplanar Systems.

9. Properties of Sections.

9.1 Centroids.

9.2 Moment of Inertia.

9.3 Transferring Moments of Inertia.

9.4 Miscellaneous Properties.

9.5 Tables of Properties of Sections.

10. Stress and Deformation.

10.1 Mechanical Properties of Materials.

10.2 Design Use of Direct Stress.

10.3 Deformation and Stress: Relations and Issues.

10.4 Inelastic and Nonlinear Behavior.

11. Stress and Strain in Beams.

11.1 Development of Bending Resistance.

11.2 Investigation of Beams.

11.4 Design of Beams for Flexure.

11.5 Shear Stress in Beams.

11.6 Shear in Steel Beams.

11.7 Flitched Beams.

11.8 Deflection of Beams.

11.9 Deflection Computations.

11.10 Plastic Behavior in Steel Beams.

12. Compression Members.

12.1 Slenderness Effects.

12.2 Wood Columns.

12.3 Steel Columns.

13. Combined Forces and Stresses.

13.1 Combined Action: Tension Plus Bending.

13.2 Combined Action: Compression Plus Bending.

13.3 Development of Shear Stress.

13.4 Stress on an Oblique Section.

13.5 Combined Direct and Shear Stresses.

14. Connections for Structural Steel.

14.1 Bolted Connections.

14.2 Design of a Bolted Connection.

14.3 Welded Connections.

15. Reinforced Concrete Beams.

15.1 General Considerations.
15.2 Flexure: Stress Method.

15.3 General Application of Strength Methods.

15.4 Flexure: Strength Method.

15.5 T-Beams.

15.6 Shear in Concrete Beams.

15.7 Design for Shear in Concrete Beams.

References.

Index.

### Simplified Mechanics & Strength of Materials for Architects and Builders PDFAuthor(s): James Ambrose ; based on the work of the late Harry Parker

Series: Parker-Ambrose series of simplified design guides

Publisher: J. Wiley, Year: 2002

ISBN: 0-471-40052-1